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Abstract: Infrastructures play an important role in urbanization and economic activities but are
vulnerable. Due to unavailability of accurate subsurface infrastructure maps, ensuring the sus-
tainability and resilience often are poorly recognized. In the current paper a 3D topographical
predictive model using distributed geospatial data incorporated with evolutionary gene expression
programming (GEP) was developed and applied on a concrete-face rockfill dam (CFRD) in Guilan
province- northern to generate spatial variation of the subsurface bedrock topography. The compared
proficiency of the GEP model with geostatistical ordinary kriging (OK) using different analytical
indexes showed 82.53% accuracy performance and 9.61% improvement in precisely labeled data. The
achievements imply that the retrieved GEP model efficiently can provide accurate enough prediction
and consequently meliorate the visualization insights linking the natural and engineering concerns.
Accordingly, the generated subsurface bedrock model dedicates great information on stability of
structures and hydrogeological properties, thus adopting appropriate foundations.

Keywords: GEP; predictive model; geospatial; geostatistical; subsurface; topography; bedrock; Iran

1. Introduction

Increased access to timely and well documented geospatial data lead to the application
of diverse empowered predictive data mining approaches [1] to address the knowledge
extracted problems through more sensible information processing paradigms [2–4]. In
recent years, predictive geospatial remotely sensed-based models in combination with field
surveyed data through the GIS platform have been used to interpret different variant of in-
terested geo-objects [5–9]. Despite to drawbacks of GIS in parametric modeling tools [10,11],
its incorporation with innovative intelligence approaches have shown significant degree of
success in a series of emerging environmental phenomena on the ground surface [12–16].
However, developing such models through geospatial resources for subsurface investiga-
tions due to limited data requires exploratory interpolation tools and the complexity of the
prospected geo-objects is a difficult and cumbersome task [17,18].

In subsurface mapping process of infrastructures such as dams, analyses of thematic
and surveyed geospatial data due to complexity in both design and construction phases
play a fundamental role. The surface geospatial data leads to find the best site locations with
the minimum impacts on vicinity areas [19,20], while the subsurface geospatial provide
more insights on construction process and required structural elements for more safety.
This implies a great importance of geospatial analyses in both on/under the ground surface.
Thereby, in addition to implemented traditional decision-making methods [21], integrating
different intelligence systems for the aim of improving the geospatial data analyses in
selecting the dam site locations have emerged [22,23]. For such studies, a variety of
geospatial layers like the geological formation, soil type and erosion, fault line, digital
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elevation model (DEM), slope, ground water, rainfall, water discharge, land use/cover,
road network, dominants of urban areas, seismicity patterns, landslide scars, and dissolved
solids are used. However, in construction, the subsurface spatial data describing the
topographical condition, foundation concerns, ground water table, and availability of
materials is more interesting [24,25]. This implies the necessity of utilizing integrated
up-to-date geospatial-surveyed database in analyzing the associated problems to speed up
phases of the workflow in infrastructure scale [26]. However, providing the geospatial data
repository due to traditional collections is typically a time-consuming process [27,28].

Figure 1 shows the typical steps in providing appropriate geospatial database to
dedicate a knowledge-based predictive model. Such a geospatial database involves a
wide variety of geo-information, remotely sensed products/images, and site surveys.
Depending on the required attribute, the geospatial database can cover DEM, land use,
soil type distribution, topographical indices, surface geo-data, drainage pattern of the
catchment area, and slope stability, as well as probable natural hazard risks. Accordingly,
these incorporations allocate significant economic, social, and environmental benefits for
future urbanization and industrial developments on both local and regional scales [27].
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Depth to bedrock (DTB) is one of the interesting subsurface attributes in planning
and construction of dams due to significant influence on stability performance and land
surface processes [22,23,26]. This attribute (Figure 2) provides knowledge on spatial
variation and topographical interface between unconsolidated sediments and stiff layer,
as well as more environmental insights to the migration of contaminants following the
bedrock gradient [29–31]. From an economical perspective, the DTB can significantly
impact initialized project costs based on damage, rippability, and excavation volume
as well as unnecessary mitigation measures. In foundation design, shallow bedrock
requires less overlaid removal for shoring, while deeper distributions can be a liability for
lateral variations in soil characteristics [32] and consequently footing and slab failures if
not accommodated.

Referring to literatures, the risk of dam project can be reduced through efficient but
accurate 3D subsurface spatial DTB model [33–35]. However, creating accurate continues
predictive spatial DTB model due to densities of sparse surveyed points and imprecise
physical data from the material formations as well as associated uncertainties [17,18,36]
is usually beyond the ability of traditional applied methods. Furthermore, the observed
conflicts of the outcome in predicted DTB subjected to each individual interpolation
algorithm [17] evidently describes why it is not always clear which method can provide
the most appropriate model.
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Gene expression programming (GEP) is an evolutionary computational algorithm for
optimization problems, closely related to genetic algorithms and genetic programming [37].
Despite the achieved success of intelligence computational techniques in solving the de-
merits of DTB models [17,38,39], no distinguished work using GEP for the purpose of
subsurface DTB modeling has been reported. Moreover, variability of DTB due to great
influence on the stability of dam in high seismic zone such as northern Iran is preferred to
be estimated as accurately as possible [40–43]. This gap motives dedicating an appropriate
alternative with supreme predictability levels by introducing a predictive 3D spatial DTB
using the GEP. Further, this was applied on a dam site in Guilan province-northern Iran,
where high accurate quantitative model is great of interest.

In the current study, the geospatial database was provided using the first three steps
presented in Figure 1 through the retrieved information of 63 compiled boreholes, DEM,
geology map, and spatial geographical coordinates. The structure of optimum GEP model
was captured through programming in C++ with ability in checking wide variety of internal
characteristics. It then was compared with conventional ordinary kriging (OK) technique
and evaluated using different performance metrics and uncertainty analyses. Then, 82.53%
accuracy was observed with R2 = 0.97 in GEP comparing to R2 = 0.92, and 74.6% for
OK revealed superior performance in predictions of DTB. These predictions can assist in
possible reduction in number of boreholes and corresponding costs.

2. Principle of GEP

The GEP [37] like genetic programming (GP) [44] is an evolutionary intelligent
paradigm that originated from genetic algorithms (GAs) [45]. The main fundamental
differences between GAs, GP, and GEP are raised due to employed individuals, where the
GAs uses linear strings with fixed length (chromosomes) and GP works with nonlinear
entities of different sizes and shapes (parse trees). This characteristic in GEP is turned into
encoded linear strings of fixed length (the genome or chromosomes) to express nonlinear
entities of different sizes and shapes, i.e., simple diagram representations or expression
trees (ET).

Referring to Figure 3, the GEP is started with initialized random generated popu-
lations (chromosomes) and aims to select and reproduce the individuals using genetic
operators and calculated fitness function (FT). The appropriate solution then is found
through an iterative procedure comprising three main genetic operators including muta-
tion, transposition, and recombination. If the termination criterion (number of generation)
is not achieved, then the process will reproduce new genes using a roulette wheel [46].
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Thereby, in the iteration process each chromosome might be modified by none/one or
several operators that randomly selects the individuals. In the modification process, the
mutation operator essentially is much more effective than others because it can occur in any
level of the chromosome. The appropriate value for this operator can be selected within
[0.01–0.1] interval [37,46]. Transposition operator internally replaces some consecutive
elements of the chromosome. It can be performed using gene, insertion sequence (IS),
or root IS (RIS) procedures. The IS provides a copy of randomly selected segment of
consecutive elements in tail while in the RIS it is replaced in the heads (roots) of genes.
Gene transposition aims to replace the chosen segment of each gene except the first one
in the beginning of the chromosome. For transposition, choosing a value in the domain
of [0.01–0.1] is recommended [46]. Subsequently, the information of two parent chromo-
somes using recombination procedure is exchanged to generate two offspring. Therefore,
new populations with the same size of the parent but in the form of different sub-ETs are
generated that further should be evaluated using the FT.
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Figure 3. Flow diagram of GEP algorithm.

Each gene of the evolved entities is a fixed length string of different alphabets com-
prising the head (function and terminal) and tail (terminal). Considering the head (h) as a
used defined parameter, the length of the tail (t) is determined by trial error procedure as:

t = h(n− 1) + 1 (1)

where; n denotes the number of arguments of functions.
Therefore, root of ET (position 0) always is filled by functional operator and subse-

quently appropriate functions depending on the nature of the problem are attached as
branches. The inputs of model are presented in terminals in the form of inclusive variables
and numerical constants. Proper functions for the root can be selected among the standard
mathematics factors (e.g., +, −, *, /, sqrt, exp, log, ln, sin, cos, etc.) and logical operators
(e.g., and, or, not, nor, etc.), as well as Boolean or user defined relations. The corresponding
ET then is translated using Kavra language [37] as shown in Figure 4.
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3. Study Area and Geospatial Database

Guilan Province lies along the Caspian Sea in the north of Iran which can be charac-
terized using nature and humid subtropical climate with high precipitations. Moreover,
part of this territory is in mountainous active Alborlz seismotectonic province that en-
durea several destructive earthquakes, such as Manji-Roudbar 1990 (Ms7.3). As presented
in Figure 5, the Bijar CFRD is suited between the cities of Roudbar and Rasht in Guilan
province with 105 Mm3 nominal reservoir capacity, 430× 10 m crest dimensions and 59.4 m
height from the basement.
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To provide the geo-database, the 10 × 10 m resolution DEM for the study area
(Figure 5) and the corresponding slope were created. The geological and rain fall in-
formation from geological survey and meteorological organization of Iran were added
to database. The level of overlaid sediments, depth, and geographical coordinates of
63 sparse drilled boreholes and knowledge-based pseudo-observations also were pro-
cessed and stored in database. These documented geospatial data were then applied to
provide DTB predictive topographical model. Referring to Figure 5, the elevation of the
area varies between 130 to more than 430 m.

4. DTB Modelling Using GEP

Like all intelligence algorithms, the acquired data should be randomized where the
assigned percentage is user defined. Randomizing controls the lurking variable and
eliminates the possible biases that may arise in the experiment. In this paper, the values
65%, 20%, and 15% have been considered to build the training, testing, and validation sets.
To increase the accuracy of modeling process and get more insights on the area with the lack
of data, the expert intelligent knowledge-based approach presented in [17] was applied.
The most appropriate number of chromosomes and genes for predictive GEP model was
captured subjected to root mean square error (RMSE) as the FT through combination of
trial-error and constructive technique [32,47]. Accordingly, the variation of RMSE against
the achieved R2 leads to an optimum number of chromosomes, where the predictive GEP
structure was selected as the outcome of systemic feedback loops through the changing of
internal characteristics. Each individual generated model was checked and controlled to
be responsive in serving the required needs. The explained procedure was programmed in
C++. Table 1 reflects the ranges of applied parameters in model adjustment.

Table 1. The range of applied parameters in adjusting GEP model.

Parameter Value Parameter Value

chromosome [5,40] link function +
head size [3,20] mutation rate 0.02, 0.04

number of genes 3, 5, 6, 8, 10 inversion 0.1, 0.3
generation [500,2000] population size [1,100]

IS 0.1, 0.3 RIS 0.1, 0.3
recombination rate 0.3 gene recombination rate 0.1

gene transposition rate 0.1 one/two-point
recombination rate 0.027

used function +, −, *, /, sqrt(x), exp(x), pow10, log(x), 1/x, −x, x2, x3, x1/3, sin(x),
cos(x), actan(x),1−x

Figure 6 shows a sample of executed models and corresponding compared perfor-
mances as a function of numbers of chromosomes and head size. Such parametric investi-
gations revealed that topology of 35-8-3 expressing the number of chromosomes; head size
and genes and thus assigned ETs (Figure 7) can be selected as optimal. Accordingly, the
ETs of the GEP model then dedicate the mathematical relation as:

DTB = Log


Cosd2 +

d0
d2

d1 + 5.682

2


2

+

 1

1− Atan
(

10sin
√

d2

) + d2

+ Log
((

1− 3
√√

d2

)(
Sin10d1

))2
(2)

The predictability of GEP model using employed data is presented in Figure 8. Sub-
sequently, the spatial DTB model of the area using DEM pixels (Figure 5) comprising the
latitude (d0), longitude (d1), and elevation (d3) was created and presented in Figure 9.
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Figure 9. Predicted spatial DTB using optimum GEP topology.

5. Comparison, Validation, and Discussion

In the subsurface mapping process of infrastructures, analyses of thematic and sur-
veyed geospatial data due to complexity in both design and construction phases play a
fundamental role. Such modeling is a complex task for GIS technology. However, the
spatial nature of geo-objects always drives GIS to be part of the modeling systems.

The Dam projects due to vulnerabilities and more susceptibilities require as accurate
as possible information on subsurface conditions. Accordingly, unavailability of accurate
enough subsurface maps can create a challenging situation and intensify facing the un-
considered and unexpected problems in the planning and construction process. Moreover,
autocorrelation, heterogeneity, limited ground truth, and multiple scales and resolutions
also poses unique challenges [48] that violate common employed assumption of many
traditional predictive modeling [49]. As most exploratory boreholes are randomly dis-
tributed and may not be representative over the study area, selecting the best interpolation
method giving the closest approximation to known parameters is usually difficult but im-
perative [50]. Therefore, predictive spatial models are developed to increase the resolution
of the response variable based on explanatory features. Since the systematic surveys of
underground are critical, mapping and modeling of subsurface helps to mitigate the risk
from a utility-congested scenario. Combining innovative technologies such as BIM was
also found to be critical in reducing the engineering risks associated with the subsurface
construction site [10,11].

From an engineering perspective, generated models need to be pursued for validation
and check for the compliance and system realization. Such a process aims to ensure that the
produced model meets the accuracy and operational criteria. In this paper, comparing the
results with OK geostatistical technique, accuracy performance using confusion matrix and
statistical error criteria, as well as uncertainty analyses through confidence and prediction
intervals (CI and PI), were carried out.

Kriging [51] is a recognized applicable geostatistical interpolation technique for the
unknown values of spatial and temporal variables. Governing by prior covariances through
the Gaussian process regression, this algorithm dedicates the best practical unbiased
prediction for intermediate values [52]. Among the different types of kriging, the OK
can implicitly evaluate the mean in a moving neighborhood as well as estimating a block
value [53]. This method presents a minimized estimation of variance through the optimal
weights to reduce the error [45] as:
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where; γ is the variogram value. zi and Xi denote the real and estimated values at location
i, respectively. λi shows the assigned weighting coefficient and µ is Lagrange factor.

The performance and comparison between the OK and GEP model subjected to
randomized datasets are shown in Figure 10A. The level of CI represents a visual sense
for long-term success of the method in capturing the DTB, while PI shows the certain
probability of future estimation. The stability and capacity of GEP and OK predictive
models using employed data was reflected in Figure 10B. Statistically, the predictive model
is in control if the outputs fall within certain ranges where the wider CI, the more instable
the relation. Residual as the difference between the observed and predicted indicates the
fitting deviation and is presented in Figure 10C.
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Visual comparison describing the predictability level of OK and GEP using confusion
matrix [54] is given in Table 2, where each array dedicates the number of true labeled
outputs. The results showed 82.53% performance in accurate data labeling in GEP and
9.61% improvement than the OK. The perspectives of 3D generated models then are
presented in Figure 11.
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Table 2. Predictability and observed improvement of GEP and OK (The bolded numbers are referred to GEP).

Predicted Output Results

Target [<128.7] [128.7–
143.57]

[143.57–
158.44]

[158.44–
173.31]

[173.31–
188.18]

[188.18–
203.05]

[203.05–
217.92]

[217.92–
232.79]

[232.79–
247.66]

[247.66–
262.53]

[262.53–
277.4] [>277.4] Total True False

<128.7 0 0,0 0,0
[128.7–143.57] 0,1 1,0 1,1 2 1,0 1,2

[143.57–158.44] 1,1 6,6 1,1 8 6,6 2,2
[158.44–173.31] 1,1 1,1 2 1,1 1,1
[173.31–188.18] 1,0 5,5 1,0 0,1 0,1 7 5,5 2,2
[188.18–203.05] 8,7 1,1 0,1 9 8,7 1,2
[203.05–217.92] 0,1 9,7 0,1 9 9,7 0,2
[217.92–232.79] 2,3 1,0 3 2,3 1,0
[232.79–247.66] 0,1 1,0 5,4 0,1 6 5,4 1,2
[247.66–262.53] 1,0 4,4 0,1 5 4,4 1,1
[262.53–277.4] 1,2 11,10 0,1 12 11,10 1,2

[>277.4] 0 0,0 0,0

Bold values: GEP 52,47 11,16
Accurate labeled data (%) 82.53%, 74.6%
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The performance of predictive model including quantitative numerical values can
be scaled and compared using statistical error metrics such as mean absolute percentage
error (MAPE), RMSE, R2, and residuals. The MAPE is one of the most popular indexes for
description of accuracy and size of the forecasting error, while residual represents a fitting
deviation of predicted value from measured. RMSE expresses the prediction accuracy of a
model and is an appropriate estimator for the standard deviation of the error distribution.
R2 reflect the goodness of fit in prediction problem. As presented in Figure 12, higher
values of R2 as well as smaller MAPE, residual, and RMSE are interpreted as more accurate
levels (Figure 11).
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6. Concluding Remarks

Developing accurate enough subsurface topographical predictive models can address
new challenges in both infrastructure and urbanized scales. On a regional scale, 3D models
can completely tie geospatial databases into subsurface models. Accordingly, unforeseen
subsurface conditions due to incomplete information can cause large incurred indirect costs.
This leads to a higher quality database, superior knowledge, and thus more visualized
insights on new opportunities. It then leads to more tailored planning and management of
increased subsurface uses and thus wider and long-term benefits.

These concerns stimulated checking performance of GEP evolutionary algorithms
in subsurface analyses where high-resolution and more accurate predictive DTB models
significantly are demanded. The capabilities of programmed GEP in C++ then was pur-
sued in Bijar CFRD dam, north of Iran, and compared with OK. According to obtained
results, the GEP model showed 9.81% progress more than OK in predictability levels of
DTB. Analyzed control performance in terms of MAPE, RMSE, residual, and R2 reflected
supreme performance in GEP than OK. Referring to established CI and PI more stability in
model and thus future prediction in GEP rather than the OK is expected. The compared
results revealed that OK provides over/underestimate more results than GEP and thus can
generate unrepresentative interpolation for the entire of the studied area. This implies that
GEP efficiently dedicates more cost-effective and accurate enough prediction for the DTB.

From a practical perspective, DTB mapping can assist in distinguishing infill sedi-
ments. It can be applied for modeling the landscape evolution, natural hazard assessments,
and groundwater evaluation to help decision makers in assessing the risk patterns and
promote new responses to detect out of the ordinary behavior before serious damages
are inflicted.
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